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Abstract

For H a finite-dimensional semisimple Hopf algebra over an algebraically closed field of charac-
teristic zero the induced representations frBhand H* to the Drinfel'd doubleD(H) are studied.
The product of two such representations is a sum of copies of the regular representadigh )of
The action of certain irreducible central characterg/éfon the simple modules df is considered.
The modules that receive trivial action from each such irreducible central character are precisely the
constituents of the tensor powers of the adjoint representatiéh of
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Introduction

Let H be a finite-dimensional semisimple Hopf algebra over an algebraically closed
field of the characteristic zero. The Drinfel'd double fwas introduced by Drinfel'd in
order to provide new quasitriangular Hopf algebras. The representation the®r{Fof
has been intensively studied in the last years. Kaplansky’s tenth conjecture states that the
dimension of each simplé&-module divides the dimension @f. Since the conjecture
was proved forD(H) [2,22] different relations between the categorymfmodules and
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that of D(H)-modules have been considered. These relations were also used in classifying
semisimple Hopf algebras of certain dimensions (see [13] and references there).

In the first section some basic facts about the character ring afe recalled. Sec-
tion 2 is concerned with the study of the induction and the restriction functors between
H-modules and (H)-modules. The composition of the above two functors is computed.
Itis shown that 12| ="y iy N*@ M Q N.

The trivial module ofH induced toD(H) is considered in Section 3. Study of the
restriction to H* of each simple constituent of this module leads to the definition of a
set K (H) of irreducible centrall*-characters. The set of the simple constituents of all
tensor powers of the adjoint representationfbfis characterized as being the set of all
simple modules receiving the trivial action from each charactéf (H).

When H has a commutative character ring (for example wigis a quasitriangular
Hopf algebra) these irreducible centrdl*-characters correspond to the central group-
like elements ofH. Action of theseH *-characters on the set of simple modulesbis
considered in Section 4. An application of these results is given in the last section where
the Grothendieck ring structure of the Drinfel'd double of the unique nontrivial semisimple
eight-dimensional Hopf algebra is described.

For simplicity, the ground field& is assumed to be algebraically closed of characteristic
zero even though some of the results also work for charactepisticO. Algebras and
coalgebras are defined over the ground fieldomultiplication, counit and antipode of a
Hopf algebra are respectively denoteddye andsS. All the other Hopf algebra notations
are those used in [12].

1. Thecharacter ring C(H)

Let H be a finite-dimensional semisimple Hopf algebra over an algebraically closed
field k. Its character ringC(H) is the finite-dimensionat-algebra with basis given by
the characters of the irreduciblg representations. We denote these characteng bipr
i =0,...,r whereyg is the trivial character, which is the unit of thiealgebraC(H).
SinceC(H) is a semisimple-algebra (see [25]) the Artin—~-Wedderburn theorem implies
thatC(H) is a product of matrix rings:

C(H) =Mpy(k) x Mp, (k) x Mp,(k) x -+ x M) (k). (1.1)

Since H* is also semisimple ande C(H) being a cocommutative element [21] we may
assume that the first block matrix corresponds to the primitive central idempatéft,

the integral ofH* with ¢ (1) = 1. Therefore; generates a one-dimensional two-sided ideal
inside C(H) and we havepg = 1. C(H) admits an associative symmetric nondegenerate
bilinear form given by(x, u) = x u(A), whereA is the integral inH with e(A) = 1. From

the orthogonality relations [8], we know thé;, x;+} form dual bases for this bilinear
form, wherey;« = S(x,). On the other hand, semisimplicity 6f(H) implies that(, ) =
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>, astr|s() for some nonzero elements € k where tis() represents the trace on the
matrix block M, (k). In fact, Lorenz’s proof of class equation given in [9] shows that

dim, H*
el Sy (1.2)
Ps d|mk H
Heree, are the central primitive idempotents©f H) for s = , f. Ifwe considet;,
to be the matrix entries i, (k) we know that{euv, a—e } are also dual bases cif(H)
Therefore, as in [9] we have that

le ®xl—2i e, ®el,. (1.3)

SUv s

There is another symmetric nondegenerate bilinear fornCoH), called multiplicity
(see [15]), and given by (x;, x;) = &;,; for any two irreducible characterg and y;.
Thus {x;, x;} form dual bases fom(,). We notice that for any two virtual characters
X, € C(H) we havem(x, u) = (x*, u). Moreover, for any three charactexsu, n €
C(H) Nichols and Richmond proved in [15] that

m(x, ) =m(x*, 1) and m(x, un) =m(u*, nx*). (1.4)
In the next section the following propertiesaf , ) are needed:
Proposition 1. Let H be a semisimple Hopf algebra with the character rifigF ). Then

D x= ZAuv ;m(euv’ xey,, foranyx € C(H).
(2) m(euv, (ew[) )= 8s,t8v,w8u,tas-
(3) m(euva e) = (Ss,t*(su,vas-

Proof. (1) For any character we havey =>";_qm(xi, x)xi = >;_om(xi*, x*) xi. The
linear functionm (-, x*) applied on the first tensorand of relation (1.3) gives the equality
of (1).

(2) Letx =€, in(1).

(3) Note thate; =Y, ¢!, and apply (2). O

2. Drinfel’d double D(H)

If H is a finite-dimensional Hopf algebra then its Drinfel'd double is a Hopf algebra
with underlying vector spacél* ® H. The coalgebra structure dd(H) is the tensor
product coalgebra structure af*°°P @ H:

A(fah) = (f20<h) ® (fysahz) and e(fsah) = f(De(h).
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The product is defined by the formula:
(f sah)(ge<l) = (g1, S ha)(g3, h) fe2 < hal.

The antipode is given b§(f s< k) = S(h)S~L(f).

Since H is semisimple and cosemisimple it follows thBt{ H) is itself semisimple
and cosemisimple [20]. In this cageé=r > A is an integral ofD (H) satisfyinge(I") =1
whereA and: are the idempotent integrals #f respectivelyH*. The Hopf algebra? can
be canonically considered as a Hopf subalgebr®@fl) via the embedding — € o< .
If V is a D(H)-module then we get al-moduleV | g, by restricting theD(H) action
to H. In this way, we get a map

resy :C(D(H)) — C(H).

Now supposeM is an H-module. SinceH is embedded inD(H) we may consider the

induced moduIdVITZ(H) =D(H)®y M = H* ® M. In this way the map

indy : C(H) — C(D(H))
is defined on the canonical basis 6{H) and then extended by linearity. We use the
notation x4 for the image of a character € C(H) under the map ing. The following
result about the induction functor is needed. Hebe a semisimple Hopf algebra akda
Hopf subalgebra off. It is known thatK is semisimple. IfM is an irreduciblekK -module

andeys is a primitive idempotent oK such thatM = Key, then MTIF(’ = Hey [13].
IndeedMTf = H ®k Key = Heyy sinceH is free K-module (see [17]).

Proposition 2. Let H be a finite-dimensional semisimple Hopf algebra ada Hopf
subalgebra ofd . Let M be aK-module andV an H-module. Then

VMY = (Vg @ M)ty
Proof. Frobenius reciprocity and the fact that jpéind* commutes implies that

mu(W, VM) =mu(MAE) W@ V) =mu(M*)1E. W* V)
=mg(M*, (W*®V)lk),
for any H-moduleW. On the other hand
mu (W, (Vik @ MIME) =mg(Wik, Vik @ M)=mg(M*, Wi ®Vik)
=mg(M*, (W*®V)lk).

Thereforempy (W, V @ MAE) =my (W, (Vg ® M)1%) for any H-module W which
implies thatV @ M+# = (V] x @ M)tE. O
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Let Mo = kA be the trivial H-module andAg = MOTZ(H). The remark before Propo-
sition 2 implies thatAg = D(H)(e >~ A) = H* > A. ThenAg = H* where D(H) acts
on H* in the following way:

o (h.f,x)=(f, S Yhoxhy) is the left coadjoint action off on H*,
e f.g = fgisthe left reqularH* action onH*.

The moduledo was studied in [26]. It was proved that Esgy) (Ag) = C(H) as alge-
bras insideH* and the simpleD(H)-submodules ofig are in one to one correspondence
with the central primitive idempotents 6f(H). With the above notations, it follows that
eachH*e; is a homogeneous component 4§ and it containgp; isomorphic copies of
a simpleD (H)-module Vy. (Using the notations of relation (1.1, is the central prim-
itive idempotent ofC (H) such thatC(H)e; = M, (k).) Similarly let By be the module
obtained by inducing the trivial module frof* to D(H*). SinceD(H) = D(H*)*°P as
Hopf algebras [20] it follows thaBg is a D(H)-module. ThenBg = D(H)(t < 1) = Ht
wheret is an idempotent integral aff *. ThereforeByo = H where theD(H) action onH
is given by:

e h.l=hl is the left regular action off on H,
e f.h={f h3S~Yhy)hy is the left coadjoint action off* on H.

Before studying the relation betwedy and Bo we need the following standard fact.
Lemma 3. Let R be aring ande and f two idempotents ak. ThenHomg (Re Rf) = eRf.

Proposition 4. Let H be a semisimple Hopf algebra and lay and By be defined as
above. Themo® Bg = D(H) and the only common simple(H) constituent of these two
modules is the trivial module.
Proof. Let
D:Ao® Bo— D(H),
g®ar> (g —aiSaz)<ay.
Then is an isomorphism oD (H)-modules with the inverse given by
Y :D(H)— Ag® By,
gr<at> (g —azSay) Q@ as.

This follows from

W(Q)(g ® a)) = lI/((g — a18a3z) < az) = (g —a18as) — asSarx><iaz = gr<a
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sinceS? = Id [21] and Ag ® By is finite-dimensional. Moreove is an isomorphism of
D(H)-modules since

P(graa)=(g < azSar)r<ar=(g=a)(e®1).
Indeed
(gr<a)(e®1) =g.(e®a)=g2® (g1,azSa1)ar = (g — azSa1) ® ay.

SinceH is bisemisimple we may consider the idempotent integhaésd: of H and H*,
respectively. Thea = e > A and f =t < 1 are idempotents db(H) andAg = D(H)e ,
Bo = D(H) f. Using previous lemma we have

mp(x) (Ao, Bo) = mp(wy(D(H)e, D(H) f)
= dimy Homp ) (D(H)e, D(H) f)
=dimg fD(H)e = 1.
This implies that there is only one common constituenigfand By and this constituent

has multiplicity one in both modules. It is easy to see that the triziad)-module
k(t > A) is a constituent for botl g and By, thus it is the unique common constituenta

Remark 5. Using Frobenius reciprocity, Proposition 4 implies that the trivial module is the
only simpleD(H)-module whose restriction to bo#ti and H* contains the trivial module
for H and H*, respectively.

If {¢;} is ak-basis inH and{f'} is its dual basis iff* then the element

R:Z(elxlei)@)(fiml)

is an R-matrix, which makesD(H) a quasitriangular Hopf algebra [12]. Therefore
C(D(H)) is a commutativet-algebra. LetRy1 be the matrix obtained by interchanging
the tensorands a®. The map

@ :D(H)* - D(H),
F > (id® F)(R21R)
is bijective showing that the Drinfel'd double is factorizable [14] (see also [22]). Restricted
to the character ring oD (H), ¢ induces an algebra isomorphism between the charac-

ter ring and the center of the Drinfel'd double [1]. The image ofgrés Z(C(H)) [7].
A different proof of this fact is presented below.

Theorem 6. Let H be a finite-dimensional semisimple Hopf algebra.
Thenresy : C(D(H)) — Z(C(H)) is a surjective algebra map.
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Proof. Because the category of modules o¥(H ) is the center category of the category
of H-modules [5] the image of regslies in the center o€ (H) denoted byZ(C(H)). If A
andr are the nonzero idempotent integralgbhnd, respectivelyil*, thenI" =t ® A is an
idempotent integral oD (H). Let V be an irreducibleD (H)-module with character and

let e be the primitive central idempotent @f(H) corresponding td/. According to [11]
we have

1 1
e= “n(z)/h r= %Z“(S(’ZN“))“MAZ’

wheren = dimy H. As pointed out in [7], under the identification Df(H)* with H* ® H,
the map® restricted toC (D(H)) is just the identity map. It follows that

1 1
E=0"Ye)= %u —I'= % D n(St2e AD) ® Az

is a central primitive idempotent @ (D(H)). Therefore

1
Eln(h)=E(esah) = % > 1(St2® Av)nh)e(Az)

1 1
= B Y (s astnm) = P cpe s ),

ThenE |y #0ifand only if u(e < A) # 0. This is equivalent te: (e, ul i) # 0. Frobe-
nius reciprocity implies that the simple representation correspondipgg¢a submodule
of Ap. Since reg is an algebra map antlp has exactly dimZ(C(H)) homogenous com-
ponents, it follows that Ifresy) = Z(C(H)). O

Let Vp, V1, ..., V; be a complete set of nonisomorphic simpléH )-modules with the
charactersuo, 11, ..., u; and corresponding central primitive idempotefgsts, ..., &.
Assume that is the trivial D(H)-module. Then, as in the previous section write

I l
1
Zﬂi* ® pui = Z A_SES ® E;,
i=0 s=0

where E; are the primitive idempotents @f (D(H)) with @ (E;) =&, fors =0,...,1.

Notice thatEg, E1, ..., E; form a linear basis o€ (D(H)) sinceC(D(H)) is commuta-
tive. Without loss of generality suppose thigtl g = ¢, fors =0,..., f andE;|yg =0

for f < s < 1. We have the following expression for the compositiongr@sdy (M)) =

MAPH Ly,

Theorem 7. Let H be a finite-dimensional semisimple Hopf algebra addoe an irre-
ducible representation aff. ThenM+2H) |y =3y )y N*QM Q@ N.
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Proof. Let x be the irreducible character 8f and xo, x1, ..., x, be the set of all irre-
ducible characters off. It is enough to prove that 1] = > /_, xi*x xi- Relation (1.3)
implies that

N
sz X Xi —Z—vs(x)es,

s=0

wherevg, vy, ..., v are the characters 6f(H) corresponding, respectively, to the central
primitive idempotentsgyg, e, ..., ef. Consequently, it is enough to check that

/1
=) —vsCoes,
s=0 %

for any charactey € C(H). It will be shown that
Xt = Z —vv(x)E (2.1)
s=0 s

Then applying reg the desired equality follows immediately. Therefore it suffices to show
that

f
1
=2 vl

which is equivalent to

‘ 1
et =08uv—E

t

In order to prove this we show first thelf, 1 = 8,,.» A L E, and then that\; = at Frobenius
reciprocity and Proposition 1, part (3) implies that

mpe) (€unts Es) = mu (€l Esd) =mp (€. €5) = 8uvds.vas
if s < fand
mp) (€uyt Es) = mu (€. Esl) =mp(e,,.0) =0
if f <s <. Again Proposition 1, part (1) fab(H) implies that

et = ZmD(H) %5 €uvT) E—5u,u—Et.
s=0
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It follows thate, 1 = “Z—f”E, sincee; =), ¢!, forany 0<r < f. Thus
f f asp
SFS
xo¢=ZOeST=ZO A (2.2)
s=| s=

But Al g is the adjoint representatiafiag of H. Thereforexp? | is the charactegaq of
the adjoint action ol and by [23]xo1| = > ;_ xi* xi- Using again relation (1.3) we get

f
P
xot = SZ(:) a; €.

The above two formulae fogg1{ give the relation betweem, and A;, namelyA; = asz
forO<s< f. O

Theorem 8. Let M be anH-module and¥ be anH*-module. Then

@) My @ wpt™ = p)MIvI,
(2) mD(H)(MTZ(H)’ WTZ&H)) = |M||W|, where|M| =dim; M and |W| = dim; W.

Proof. (1) Let 1= vg be the character of the trivial representation/f. Relation (2.2)
applied forH* instead ofH gives that

1 Vi
agp

vt = E e;T = E fE;, (2.3)
s=0 s=0 $

wheree, are the primitive central idempotents 6{ #*) anda;, p, are the constants of
C(H*) asa, and p; were for C(H) in Section 1.E; are the primitive idempotents of
C(D(H)) that have a nonzero restriction #*, namelyE, | g+ = ¢, (Theorem 6 applied
to H*).

Sincen?Eq is the regular character @i (H), Proposition 4 implies thatot vt = n?Eq
insideC (D (H)). Replacement ofot andvgt with the above formulas shows that the only
primitive idempotent ofC (D (H)) with nonzero restrictions to botH and H* is Eg, the
integral of D(H)*. Thus the sets of idempotent&; |0< s < f} and{E, |0<s < f'}
have only one common elemerfy. This fact together with the formula (2.1) for an in-
duced character given in the proof of the previous theorem implies the equality in part (1).

(2) Itis enough to prove the formula in the case witmandW are both simple modules
over H and H*, respectively. Lety, be a primitive idempotent off such thatM = Hey,
andew be a primitive idempotent off* such thatW = H*ey . Then

M =Dy @y M =H* @ M
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can be regarded as a submodulebgi) and
M1E = D(H) (e aem).

Similarly

WD — D(H) (e w< ).

Lemma 3 gives
mpan (M4 W) = mpry (D(H) (€ s ear), D(H)(ew > 1))
=dimg(ew < D) D(H) (e < epr)
=dimy(ew H* 0 Hey) = [M||W]. O

3. Theinduced trivial representation

In this section we study the restriction of the induced modige¢o H*. Ag is the rep-
resentation corresponding j@TZ(H). From the description given in previous sectidmn,
restricted toH* is the regular module. The charactergbf-modules can be viewed as ele-
ments ofH. Letd € H be an irreducibleg?*-character corresponding to the simple module
W, and let&; be its associated primitive central idempotenttf. SinceC(H) C H*, the
H*-moduleW, can be restricted t6' (H). Recall that

C(H) =k x Mpy (k) x Mp, (k) x --- x My, (k).

The decomposition oW, | ¢z as a direct sum of simpl€(H)-modules gives a character
formula

f
dlcun =) Xvs,

s=0

where x; represents the multiplicity of the corresponding sim@léH)-module in
Walcy andvy, ..., vy are the irreducible charactersGtH). Then

dca(e),) = xsvs(eh,) = Xsbuv-

Onthe other handl| cx)(e),) = e}, (d) from the identification ofd with H**. It follows
thate}, (d) = x,6,,, for any matrix entrye;, . Recall from the previous section thHt"e,
are the homogenou8(H )-components ofig. Their restriction toH* is characterized by
the following theorem:
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Theorem 9. Let H be a finite-dimensional semisimple Hopf algebra apd central prim-
itive idempotent of the character rinG(H). Then

(H Eg \LH*: Z W;S(d),

delrr(H*)

where the sum is over all irreducible charactet®f H*.

Proof. It is enough to show that g+ (W,, H*e;) = e,(d) for every irreducible charac-
ter d. We denote byr the projection ofH* into the two-sided ideal generated by.
Thenn(es) = Y 1" fii Where f;; are some of the primitive idempotents corresponding
to the minimal two-sided ideaH*&,. Therefore,H*e, containsm copies of W; and
mp=(Wy, H*e;) = m. On the other hande,(d) = m(es)(d) = Y j-g fii(d) = m since
fii(dy=1forany 1<i <m. O

Remark 10. Let x be a character off andd a character oHH*. Then

x*(@)=dlcun(x*) = ZXSUX(X

Sincev, (x*) = vs(x) (see [16]) it follows thaty*(d) = x (d).

For every irreducible charactérof H* we defineF; =) /_, xi+(d) x;. Note thatF; €
Z(C(H)) since by relation (1.3) it follows that

f f

1 1
Fi=Y tawe, =3t
sUs

s=0 " s=0

(3.1)

If g is a group like element aff we have the following characterization by

Lemma 11. SupposeH is a finite-dimensional semisimple Hopf algebra apd C(H) is
a primitive central idempotent. Thell’sr < n and we have equality if and onlydf = &;,
thg.- central idempotent associated to an irreduciBlé-characterd € Z(H). In this case
Dp

o Fa=6a.

Proof. Formula (1.2) for, gives

Ps _ npf ndimk C(H)ey <n
ay, dimg H*e; dim, H*eg

Therefore’i =nifand only |pr dimy H*e;. It follows that dim, Vs = p; which means
that H*eg |s a homogenou® (H) module. ButAg is isomorphic toH* as H*-modules
andV;| g+ is a homogenou#/*-module. The proof of Theorem 9 implies that= &, for
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some irreduciblegd* charactee. We claim thatd € Z(H). Indeedd = J—d)(éd — A) and
the map “~" sendsC(H) into Z(H). With the above notations

dimg H*e,  €2(d) _ e(d)

xs=€(d) and a;= = =
nps ne(d) n

It follows that

Xy n

1
Fa= Z a uv(d)evu = as —es = @es'

tuv

Let K (H) be the set of all irreducible charactets C (H*) that have the property of
the previous lemma. Consequently

K(H)={d € C(H") | & is a primitive central idempotent a&f(H)}.

Proposition 12. Let H be a finite-dimensional semisimple Hopf algebra. An irreducible
characterd € C(H*) acts asc(d)ld on Hag if and only ifd € K (H).

Proof. Supposel € K (H). By [23]

f
b
Xad—ZX:Xz*— —es and yadd) =) “e(d).
§= O s=0 s

Sinced € K(H) there is only one central idempoteat with ¢;(d) £ 0, namely&,.
Therefore,yad(d) = €(d) x (1) by Lemma 11. It follows that! acts as(d)ld,; on each
irreducible constituent of{;q. Conversely suppose thdtacts ase(d)ld on Hag. Then
xad(d) = ne(d). Formula (1.2) implies that

f 2 f

2
"Ps . (d)=ne(d) or Py

= dim; H*eg = dimy H*esed( ) =€)

Since dim C(H)es; = pf the last relation becomes

dimy C(H)ey B
Z G e, @ =€@.

The valuee, (d) is a nonnegative integer since it represents the multiplicity/ pin H*e;.
On the other hand

dimg C(H )es

f
D es(d)=e(d) and G Ee.

s=0

<1 forany0<s < f.
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It follows that dim, C(H)e; = dim; H*e; whenevere;(d) # 0. There is only one with
this property since in this cad{j? =n and Lemma 11 implies thate K(H). O

Recall that the exponent of a semisimple Hopf algebra is the smallest positive number
m > 0 such that:!"! = e(h)1 for all h € H. The generalized power™! is defined by
Rl = > hah2. .. hym. The exponent of a finite-dimensional semisimple Hopf algebra is
always finite and divides the cube power of dimensio#/df3].

Proposition 13. Letd € C(H*) be an irreducibleH* character andy € C(H) be an
irreducible H character. Thenx(d)| < x(De(d) with equality if and only ifd acts as
aldys on the irreducibleH representationV corresponding to the character whereq is
a root ofe(d).

Proof. Let W be the irreducible representation &f* corresponding to the charactér
ThenW is a right H-comodule. Define the map

T MRIW—->MQQW,

m@w > wam Q@ wi.

If | =exp(H) thenT! = Idyew. ThereforeT is a semisimple operator and all its eigen-
values are root of unity. It follows that(ff) is the sum of all these eigenvalues and in
consequencgr(T)| < dimp(M ® W) = x(De(d). It is easy to see that(ff) = x(d). In-

deed if W; = (x1;) is considered as the subspace generated by the first row of co-matrix
entries then

e(d)
T(m®xy)= ijim ® x1;j
j=0

which shows that

e(d)

tr(T) =Y x(xii) = x(d).

i=0

Equality holds if and only ifl = ax (1)e(d)ldyew for somea root of unity. The above
expression foff” implies that in this case;jm = §; jam for any 1< i, j < e(d). In partic-
ulardm = ae(d)m for anym € M which shows that/ acts as a scalar multiple gif and
that scalar is a root af(d). The converse is immediate T

The sets off *-characters closed under product and taKirge in bijective correspon-
dence with the Hopf subalgebrasmf(see [17]). Le{ X) denote the Hopf subalgebra &f
corresponding to a such sEtof characters.
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Proposition 14. Let H be a finite-dimensional semisimple Hopf algebra. Then the set
K (H) is closed under multiplicity and. It generates a Hopf subalgebr& (H)) of H
which is the biggest central Hopf subalgebrafdf

Proof. If d € K(H) thend* € K(H) since xad(d*) = xad(d) = e(d)n andd™ acts with
the same scalar ofHyg. If d,d’ € K(H) write dd’' = Z?:lm,»di whered; are irreducible
characters otf*. Then

q
Xad(dd') =) mixadd;) and
i=1

q q
| xaddd")| <" mi| xadd)| < xadD) Y mie(d;) = xadDe(dd").
i=1 i=1

It follows by Proposition 13 thaltyad(d;)| = xad(De(d;) foralli =0, ..., g and therefore
eachd; acts as a scalar multiple difi,g. Sinced; acts as(d;) multiple of identity onk A

it follows thatd; acts as the same multiple of the identity on each constitueAt,gind
therefored; € K(H). If L ¢ Z(H) is a Hopf subalgebra off then L acts as epsilon
identity on Hyg. It follows that all the irreducible characters bf are contained irk (H)
and thereford. is contained iNK (H)). O

To proceed further, we need to recall the notion of index of a character introduced
in [7]. Let H be a semisimple Hopf algebra awdan H module with the corresponding
charactey. If J =(),,>oAnn(V®") is the intersection of the annihilators of all the tensor
powers ofV thenJ is the largest Hopf ideal contained in the annihilatovo{see [19]).
Let A be the matrix of the linear operatdr, of C(H) corresponding to the standard
basis ofC(H) given by the irreducible characters Hf. ThenA has nonnegative integer
entries. Following [7],/ = 0 if and only if A is an indecomposable matrix. In this context,
an (m x m)-matrix A is called indecomposable if it is not possible to find a partition of
{1,2,...,m} into two setsM andN such thatz;; =0 for alli € M andj € N. The index
of imprimitivity of A is the number of eigenvalues afwith the possible greatest absolute
value (see [4]). The index of the characjers defined to be the index of imprimitivity of
the matrixA. Recall that the greatest absolute eigenvalye(ls [7]. In [7] it was proved
that if a simple moduléV is a constituent of two tensor powev$>” and V® of V then
m — [ is divisible by the index o .

Remark 15. With the above notations, |&& = H/J be the quotient Hopf algebra &f.
The set of all irreducible modules & is the set of irreducible constituents of the tensor
powers ofV . ThenC (K) is a subring of” (H) and every primitive idempotent ¢f(K) can

be written as a sum of primitive idempotentfH). If x is central inC (H) theny is also
central inC (K). The corresponding eigenvectors of the linear opetajoof C (H) are ex-
actly the primitive idempotents @f (H). Suppose is a primitive idempotent of (K) and
the corresponding eigenvaluebf restricted taC (K) ate is A. It follows that all the prim-
itive idempotents of” (H) entering in the decomposition efgive the same eigenvalue
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for L,. In particular, ife € C(K) is an eigenvector of., corresponding to the eigen-
value with a one-dimensional eigenspace©(X ), thene is the sum of all the primitive
idempotents o (H) which are eigenvectors df, with the corresponding eigenvalie

The trivial representation is a constituent Hfy and therefore all the constituents
of Hf(’j”’ are also constituents Gif(’f for anym < [ natural numbers. Thus there is a small-
est numberp such that all the simple constituents Hi ”’*‘” are the same as those of

HZY for anyg > 0.

Theorem 16. Let H be a finite-dimensional semisimple Hopf algebra. An irreducible repre-
sentationM of H is a constituent ng’j” if and only if every central irreducible character
d € K(H) acts ase(d)ldy; on M.

Proof. By the previous proposition every irreducible central charadterk (H) acts as
€(d)ld on Hyg. The set of all constituents ovﬁ’jp is closed under multiplication ant
It corresponds to a quotient Hopf algebka= H/J. Then Hyq is @ module oveX and
its tensor powers generate all the representatiors.dfhe index ofHaq is one since the
trivial representation oK appears as a constituent of any powe#&jf. In consequence,
by [7, Theorem 5.3], the eigenspacelof | corresponding to the eigenvale= xad(1) is
one-dimensional and it is generated by the idempotent integrafl K. Using [8] we have

1 1
=dgmx 2 XOx=gnx 2 xDx

x€lrmr(K) x.m(x.xby>0

As in Proposition 13ad= > ;_g Xi Xi* = ZS -0 a‘ e; andyaqis a central element @f (H).
Consider the decomposition gf as sum of pr|m|t|ve idempotents 6f(H). If ¢],, appears
in the decomposition afy the above remark implies that the eigenvaluggfate;, is n.
The above formula ofaq gives that”? = n. According to Lemma 11 this |mpI|es that

=&;withd € K(H). Thustg = ZdeK(H) &;. From the same Lemma 11 we know that

§a= Xxi+ (d) xi

W), )y
n o n =0

and

=y e(d)le (==~ Z<xi*, 3 de<d>>xi.

deK (H) i=0 i=0 deK (H)

The two formulas forg show thaty is a constituent of(;’d if and only if

<x, Z de(d)> #£0.

deK (H)
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Equalizing the coefficient afg = ¢ in these two formulas we get that

n_ 2
T Y @ (3.2)
deK (H)

Therefore

<x, > de(d)>=x<1> > e@?

deK (H) deK(H)

for every constituent oﬁg;’d, otherwise this evaluation is 0. Singe(d)| < x (De(d) we
deduce thaj is a constituent oﬁ(;’d if and only if x (d) = x (D)e(d) for everyd € K(H).
ThereforeM is a constituent oﬂfiagc’f’ if and only if every central irreducible character
de K(H) actsas(d)ldyy onM. O

Remark 17. Formula (3.2) gives thql}'ﬂ =dimy (K (H)) andM, € Irr(Hff’) if and only
it Xk =xDe.

Proposition 18. Let H be a finite-dimensional semisimple Hopf algebra. Then
Ann(HYP) = o((K (H)))H,
the augmentation ideal 4k (H)) extended tdH .

Proof. Let J be the annihilator oﬂgp. By the previous theorem everyc K(H) acts
as identity onHe%”. Therefored — €(d)1 is in the annihilator ofHa%p. It follows that
w({(K(H)))H is contained in/. Since

dimg(H/J) = dimy(K) = =dimy(H/o((K (H))H))

n
dim (K (H))

we conclude thafl =w((K(H)))H. O

4. An equivalencerelation on the set of irreducible characters

If H has a commutative character ring (for example{ifs quasitriangular), then the
action of the central charactese K(H) on the irreducible representations Hf can
be described in terms of the restriction functor frdhiH)-mod to H-mod. In order to
establish a relation between this action and the restrictioH tof the D(H)-modules,

a binary relation on the set of irreducible charactersHofs introduced. Lety and i

be two irreducible characters @f corresponding to the irreducible representatidfs
respectivelyN . We definey ~ u if there is a simpleD(H)-moduleV such thatM and N
are constituents o¥ | . It is clear that~ is reflexive and symmetric. Let us remark that
this is an equivalence relation in the case witgis the dual of a group algebka’ . Indeed
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in this caseD (kG*) is isomorphic withD (kG) and the irreducible representations of the
latter are described in [24]. They are isomorphic with the induced module®,, M
whereZ; runs over the centralizers of a set of conjugacy class representativé$ aner

all the irreducible representationsof. It is easy to see that in this case the relation defined
before coincides with the conjugacy relation in the gréughich clearly is an equivalence
relation. We will see that- is not an equivalence relation in general. (See Example 1.) If
we consider the transitive closure of this relatigre- 1 if there are irreducible characters
X1, X2, ---» Xs SUCh thaty ~ x1 ~ x2 ~---~ x5 ~ u, clearly~ is an equivalence relation.

A description of the equivalence classesofvill be given in this section. IIC(H) is
commutative it will be shown that ~ w if and only if they receive the same action from
each charactet € K (H). A necessary and sufficient condition ferto be an equivalence
relation is described in this case. Frobenius reciprocity implies thatu is equivalent
with the fact thatV is a constituent of botiv 1 and N+. Thereforexy ~ n if and only if
mpmEy (M1, Nt) >00rmg(M+1],N)>D0.

Proposition 19. Let H be a finite-dimensional semisimple Hopf algebra aodx1, ..., x,
the set of all irreducible characters @f. Then for any two characterg, and x, we have
Xu ~ xv ifand only if there areg and j such thatm (x,, x; x;) > 0andm(x,, x; xi) > 0.

Proof. The above remark gives tha} ~ x, if and only if m(x,, x.11) > 0. It is enough
to prove thaty, 1| = Z:,j:Om(XM’ Xi xj)xjxi- Using Theorem 7 this is equivalent with

r r
D oxirxxi= Y mOGXiX)AjXi
i=0

i,j=0

for any charactey € C(H).
The second property @t (, ) given in (1.4) implies

r r
Xit X = Zm(x;, X X)Xj = Zm(x, XiXj)Xj-
j=0 j=0

If we multiply to the right withy; and add over we get the desired equality.C

Remark 20.

(1) If H=kG* then twokG*-characterg, h € G are conjugate if and only § = ab and
h = ba for somea, b € G.

(2) x ~ xoifand only ifm(x, xad) > O sincexad= xo?1-

(3) m(x, xad) =tr(L,) whereL, is the linear operator of (H) given by left multiplica-
tion with x.
Indeed,

tr(Ly) =Y m(xi, xxi) = Y _m(X, i Xi) = m(X; Xad)-

i=0 i=0
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For the rest of this section we assume thigiH) is a commutativec-algebra (e.g.,
H-quasitriangular).

In this case the formula from Theorem 7 becomels| = x xad. FOr any two irre-
ducible characterg and u we havey ~ w if and only if tr(L,,+) > 0 which is the
same asn(yxu*, xad) > 0. Indeed, from the above remark it follows thaty, utl) =

m(x, xad) =m(x* i, xad =m(x 1", xad-

Remark 21. SinceC(H) is commutative it follows thap, = 1 for any 0< s < f. Then
5—; = n if and only if a; = n which is equivalent with dipnH*e; = 1. From the proof of
Lemma 11 we deduce that

e, =—F
L8

for some central grouplike elemegit Therefore in this cas& (H) = G(H) whereG (H)
is the group of central grouplike elementsf

Lemma22. Let H be a finite-dimensional semisimple Hopf algebra and assum&ttfa)
is a commutativé-algebra. Then~ is an equivalence relation if and onlyﬂgff and Hyqg
have the same simple constituents.

Proof. If x € C(H) is a constituent ofH,q then all the constituents gfi. are in relation
with . Indeed, letv be a constituent of . Thenm (v, x u) = m(x*, uv*) =m(x, vu*)
and t(L,,.) >tr(Ly) > 0. Thereforep ~ .

Assume that~ is an equivalence relation. Let and i« be two simple constituents
of Hyg. By the previous statement all the constituents pf are in relation with bothy
and . Sincey is in relation withe from transitivity it follows that all the constituents
of xu are in relation withe and therefore they are constituentsH.

Suppose thaﬂgff and Hyg have the same simple constituents. ket © andp ~ v.
We have to provey ~ v. First relation is equivalent wittm(u, x1J) > 0 and the sec-
ond one withm(u, v1]) > 0. It follows thatm(x 1], v1]) > 0 which is the same with
m(x Xad» L Xad) > 0. Thenm(xu*, ng) > 0. Sincerf and Hyq have the same simple
constituents the assertion follows from Remark 20(3) above.

Remark 23. Assume thaC (H) is commutative. Then:

(1) According to Remark 21 we have th&t(H) = G(H), the group of central group
like elements ofA. In this case an irreducible representatidrof H is a constituent
of Hf(’,” if and only if every central grouplike element acts as identity/dn Re-
call form above thap is the smallest number such that all the simple constituents
of ng(p 9 are the same as those B for anyg > 0.

(2) LetM be a simple module off. All the other simple modules df receiving the same
action asM from each central grouplike element G (H) are exactly the simple con-
stituents ofM ® HY . Indeed, sincg € G (H) acts as identity oify it acts via the

same scalars on boit andM ® ng and thus on each constituent of the latter. Con-
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versely, ifg acts the same oW andN theng acts as identity o/ ® N*. Therefore
all the constituents oM ® N* are in Hﬁjp which implies thatV is a constituent of
M®HY. ) )

(3) The two formulas forg from the above proof give thaG (H)| = % Thus,G(H) is
trivial if and only if all irreducible modules off are constituents dﬂgp.

Corollary 24. AssumeH is a semisimple Hopf algebra withi(H) commutative. Lek
and u be two irreducible characters a@ff. Then

(1) x = pifandonly ifm(x, uxé’d) > 0.
(2) x ~ w if and only ifﬁx Veun = Fll)mc(,,). ]
(3) The number of equivalence classes=it equal with the order of; (H).

Proof. (1) LetT be the linear operator @ (H) defined as regoindy. By Theorem 7 we
know thatT (x) =) _i_q xi* X Xi = X Xad for any characteg € C(H). Sincex ~ u if and
only if m(x, T(n)) > 0 it follows that x ~ w if and only if m(x, T"(u)) > 0 for some
positive integern. But 7" (1) = jux54 and (1) follows.

(2) Any irreducible charactey has the property that

X»Lk(';(H) =xDy

wherey is an irreducible character @ (H). Indeed, since any € G(H) acts as a scalar
multiple of identity on the associated representafigp of x it follows thatg acts via the
same scalar multiple of identity on each simple constituen¥of, ; . Then all these
simple constituents are isomorphic apad,k(-;(H) =x(Dy. SinceXad¢k(—;(H) = xad(1)e
we get thaty ~ u if and only if

1 1
mXiG(H) = mﬂié(yy

(3) It follows from (2) immediately. O

For any irreducible characterlet G, = Zxﬂx xi (D) x;. If an elemeng € G(H) acts
as a scalar on a modul of H then it acts as the same scalar on each simple submodule
of M. In particular, all the irreducible constituents pft are in the same equivalence class
of ~. Using this we denote bg,,, the elemeniG, for some irreducible constituent
of yu.

Proposition 25. AssumeH is a semisimple Hopf algebra witfi(H) commutative. Ify
and u are two irreducible characters aff then the following relations hold

(1) xGu=xD)Gy, andG, (D) = dim . goyp every irreducible charactey .

2 6.0, G 1G(H)]
X ”’_IC_;(H)\ XK

(3) G, isacentral element off* for any irreducible charactey € C(H).
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Proof. (1) If ¢+ denotes the regular characterifthen xr = x (1)¢. On the other hand,

1= xixi=Y Gy
i=0

X/~

where in the last sum runs over all the representatives of the equivalence classes of
The remark above implies thatG, = x(1)G,,. In particular, foru = xo, the trivial
character off we get thaty G,, =x(1)Gy. Applying 1 to both sides of the last equality
it follows thatGXO(l) = G, (1) for every irreducible character. Then the above formula
for ¢ implies that

for every irreducible charactey.
(2) First let us observe that jf; ~ x thenG,,, = Gy, since all the central grouplike
elements € G(H) act via the same scalar on bgthu andx . Thus

GyGu= Y xiWxiGu= Y xiD?Gyu=Gy (DG, =
Xi®~X Xi~X

_—G .
IG(H)| "

(3) For every central grouplike element G (H) we have

g—ZXl @ xi= infj
xX/&

where the last sum is over all the representatives of the equivalence classed bé

matrix (XE%)X ¢ Is nondegenerate which implies that eveéry is a linear combination of
the elementssF )¢y @nd therefore central by Lemma 11. One can write

n x(8)
Gy =— 4.1
el 2wt © @y
§€G(H)

Corollary 26. Let H = kG for a finite groupG. Then~ is an equivalence relation if and
only if AnnN(Hag) = w (kZ(G))kG.

Example 1 [18]. Let p and ¢ be two prime numbers witly — 1 divisible by p. We
will construct a groupG such thatZ(G) = 1 but Ann((kG)ag) # 0. Let P be an ele-
mentary abeliarp-group of orderp? and Q be an elementary abeliangroup of order
gP*1. ThenG = Q x P where the action o on Q is constructed such that each sub-
group of P of order p is the kernel of the action of on a cyclic factor ofQ. Suppose
Q= Qo x Q1 x---x Q, wWhere eachp; is cyclic of orderq. If Py, P1,..., P, are all
the subgroups o of order p then we define the action @t such that eactP; acts triv-
ially on Q;. This is possible since | ¢ — 1. It follows that for eacly € G there isi such
that C;(g) 2 Q;. Thereforew(Cg(g)) 2 ]'[{’Zoa)(Q,-) # 0. In the same paper [18] it is
shown that AnNHyg) = ﬂgeG w(Cg(g)). Therefore AniiHyg) # 0 althoughZ(G) = 1.
The previous corollary implies that is not transitive.
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In the same paper [18] it was proved that the adjoint actiol§,ois faithful, therefore
~ is an equivalence relation and in this case there is only one equivalence class.

Lemma 27. Let H be a semisimple Hopf algebra witfi(#) commutative and/ be
an irreducible character of5(H). Theanlf’é(H) = G, for some irreducible character
x € C(H).

Proof. Recall thatG, = wax xi (D) x; andy ~ p if and only if

1 1
m”éaﬂ = mWG(H)'

The relation follows from Frobenius reciprocity f6r(H) andH. O

Lemma 28. Let H be a semisimple Hopf algebra with(H) commutative. IfD(H)aq is
the adjoint representation dd(H) thenD(H)agl g = H;%Z.

Proof. SinceC(H) is commutative, with the notations from relation (1.1) we haye= 1
for every 0< s < f and

f 1
Xad= Z a_es

s=0 %
where xaq is the character of the adjoint representatifyy. Similarly,

1

1
D(H)ag=)  ——E;.

s=0 $
Then

f
— 1
D(H)aaln =) ¢ = Xk

s=0 "%
; _ 2
sinceAy; =ai. O

Theorem 29. Let H be a semisimple Hopf algebra with(H) commutative. Let be an
irreducible character oD (H) andD,, be the equivalence classpf If x is an irreducible
constituent ofe|  thenD,, | y = 7G, wherel is the index ofz (H) inside G (D (H)).

Proof. D, is a central character i?(H)* and by Proposition 25

n? [ (x)
D = - X -
" TIG(D(H))| 2 e

xeG(D(H))
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Let v :D(H)* — D(H) be the map defined in Section 2 which shows th&f7) is a
factorizable Hopf algebra. Since every central grouplike element®iG(D(H)) is of
the typex = f > g for some f € G(H*) and g € G(H), it follows that ¢ (&,) is the
central idempotent off corresponding to the simple one-dimensiob&H )-moduleV, ».
Thereforet, | g = &, if g is a central grouplike element ¢f and f =1 and&, |z =0
otherwise. Consequently,

n? 3 e < g)

D -
W =G D) . u(D

&g

eG(H)
On the other hand,

1 1
m“ié(ﬂ) = mx Ve

since the irreducible constituents@f, i are equivalent withy . Then

plesag)  x(g)

n@  x@
foranyg € G(H). It follows that
n? x(g) n|G(H)| n
Duiy = Gy=-G O
e T G(D(H)))| D

g_ X X
(o XD G

5. TheDrinfel’d double of the eight-dimensional Hopf algebra

In this section we describe the Grothendieck ring structure of the Drinfel'd double of
the unique nontrivial eight-dimensional Hopf algel#fg[6,10].
Hg can be presented by generateory, z with relations

2=y2=1,
Xy =yx, X =Yz, Zy =Xz,

222=(1+x+y—xy).
The coalgebra structure is determined by
Ax)=x®x, €ex) =1 Skx)=nx,
A)=y®y, ey =1 Sy =y,
A(Z)=%((1+Y)®l+(1—)’)®x)(z®z),

e(z)=1, Sy =zt
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In addition Hg ~ Hg, G(Hg)={1,x,y,xy} =72 x Z», andG(Hg) = G(Hg) N Z(Hg) =
{1, xy} >~ Z>.

As an algebraHg = k* x Ma(k). It follows that Hg has five irreducible characters,
four one-dimensionak, u1, us, u1up, and one two-dimensional self dual characier
Therefore, the character ring éfg is five-dimensional and the ring structure is given by
G(Hg) =7 x 7o andy? = e +u1+uz+uiuo. The relatiorr on the simpleHg-modules
has 2 equivalence classes givenay= ¢ +u1+u2 +uiu2 andG1 = 2x. SinceHs is self
dual Hopf algebratg has the same representation typefas Let 1, i1, iz, i1z be the
four one-dimensional representationsHyf and x be the two-dimensional representatlon
of Hg. Similarly Hg has two equivalence classes, givenlay= 1+ ii1 + iip + fi1ii» and
Gl =2x.

In [13] it was proved thaD (Hg) = k8 x M>(k)** andD(Hg)* = k6 x M5 (k)8 x M4(k)
as algebras.

Remark 30. Let A be a finite-dimensional Hopf algebra and et G(A), n € G(A%).
Let V; , denote the vector spaéd endowed with the actioh.1=n(h)1,h € H, and the
coaction 1~ g ® 1. By [20], the one-dimensiondb (A)-modules overA are exactly of
the formV, ,,, whereg € G(A) andn € G(A*) are such thatyn — h)g = g(h — n), for all

h € A. In particular, ifg € Z(A) andn € Z(A*) thenV, . and Vy, are one-dimensional
D(A)-modules and ® g, 1® n € G(D(A)*).

Letg € G(Hg)\Z(Hg) andn € G(Hg)\Z(Hg). Then according to [13, Lemma 15.2.1]
Ve, is @ D(Hg)-module andG(D(Hg)*) >~ Zp x Zp x Zp. In order to determine the
Grothendieck ring structure dp(Hs) we need to determine first the equivalence classes
under~. Since|G(D(Hg))| = 8 there are eight equivalence classes and the dimension
of the representative character of each equivalence class is 8. Therefore each equivalence
class contains either two two-dimensional representations, one two-dimensional represen-
tation and four one-dimensional representation, or eight one-dimensional representation.
Since bothC (Hg) andC (Hg) are commutative it follows that

Dadl Hy = x2q= 5€ + u1 + uz + uguz.
Similarly
Dagluz =5- 141 +tip + tquo.

The equivalence class of the trividl(Hg)-module V1 . is denoted byDg and has the
restriction Go to H and Go to H*. The restrictions ofD(Hg)-modules toHg and Hg

can be described using Proposition 4. Looking in Table 1 it follows Thamight con-

tain any of the one-dimensional representations and posgpbty V1o. SinceDg cannot

contain both of these two-dimensional modules, the self dualitf/©implies that this

class contains all the eight one-dimensional representations. Therefore all the other equiv-
alence classes have 2 representations of dimension two. Comparing the restrictions of these
modules to bothHg and Hg and using Theorem 29 it follows immediately tHak, Va},

{Va, Va}, {Vs, V71, { Vs, Va} { Vo, Vio} form equivalence classes. Without loss of generality
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Table 1

D(Hg)-modules and their restrictions

D(Hg)-modules Restriction télg Restriction toHé"
Vie € 1

Viuiup ujup 1

Vﬁlﬁz,e € uqio
Vﬁl.ul uig ’21

Vﬁl,uz uz i1

Vﬁz.ul ui iip

Viig.up up i
Vﬁ1ﬁ2v“1u2 uqUo uquo

Vi €+ug X

Vo €+up X

Va= Vl,uluz V1 ujup +uy X
Va=V1uju, uup +uz X

Vg E X 1+

Ve X 1+ao

V71 =Viyipe ® V5 X @ d1iip + iz
V8= Viiine ® Ve X fiyiip + g
Vg €+uqup i1 +ip
Vio uq+up 1+ 90
V11, V12, Va3, Vi X X

it might be assumed thav/11, V12} and{Vi3, V14} are the other two equivalence classes.

Let D1 = { Vg, V1o}, D2 = {V5, V7} and D3 = {V1, Vg}. Proposition 25, parf2) implies

that any equivalence class is obtained as a product from other equivalence classes. Since
G(D(Hg)) = 7, x Z x Zy has three group generators it follows that all the equivalence
classes can be obtained as a product from three different equivalence classes. We claim
that D1, D, andD3 generate all the other equivalence classes. Indeed, the restrictions of
these classes to bofilg and Hg give thatDy = {Vs, Vg} = D1D2, Ds = {V2, Va} = D1 D3,

De = { V11, V12} = DoD3 and D7 = {Vi3, V1a} = D1D>D3. Examining Table 1 it follows

that multiplying two D (Hg)-modules the result cannot have a constituent with multiplic-

ity 2 since its restriction to eitheHg or Hg does not have this property. Therefore, the
multiplication of two modules from two different equivalence classes should be the sum
of the two modules in the corresponding product class. In this way the multiplication of
any 2 two-dimensional modules can be determined if they are from two different equiv-
alence classes. If they are in the same equivalence class, their product is the sum of 4
one-dimensional modules that can be easily determined just looking at the restrictions of
the product to botliHg and Hg.
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D_2=V_5, V_7
D_3=V_8 V_6
D_4=V_1, V_4
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